miR155 deficiency aggravates high‐fat diet‐induced adipose tissue fibrosis in male mice
نویسندگان
چکیده
Noncoding RNAs are emerging as regulators of inflammatory and metabolic processes. There is evidence to suggest that miRNA155 (miR155) may be linked to inflammation and processes associated with adipogenesis. We examined the impact of global miRNA-155 deletion (miR155-/-) on the development of high-fat diet (HFD)-induced obesity. We hypothesized that loss of miR155 would decrease adipose tissue inflammation and improve the metabolic profile following HFD feedings. Beginning at 4-5 weeks of age, male miR155-/- and wild-type (WT) mice (n = 13-14) on a C57BL/6 background were fed either a HFD or low-fat diet for 20 weeks. Body weight was monitored throughout the study. Baseline and terminal body composition was assessed by DEXA analysis. Adipose tissue mRNA expression (RT-qPCR) of macrophage markers (F4/80, CD11c, and CD206) and inflammatory mediators (MCP-1 and TNF-α) as well as adiponectin were measured along with activation of NFκB-p65 and JNK and PPAR-γ Adipose tissue fibrosis was assessed by picrosirius red staining and western blot analysis of Collagen I, III, and VI. Glucose metabolism and insulin resistance were assessed by Homeostatic Model Assessment - Insulin Resistance (HOMA-IR), and a glucose tolerance test. Compared to WT HFD mice, miR155-/- HFD mice displayed similar body weights, yet reduced visceral adipose tissue accumulation. However, miR155-/- HFD displayed exacerbated adipose tissue fibrosis and decreased PPAR-γ protein content. The loss of miR155 did not affect adipose tissue inflammation or glucose metabolism. In conclusion, miR155 deletion did not attenuate the development of the obese phenotype, but adipose tissue fibrosis was exacerbated, possibly through changes to adipogenic processes.
منابع مشابه
Effects of Endurance Training on the Expression of Cathepsin B (CTSB) and Cathepsin L (CTSL) genes in the Adipose Tissue of Mice with a High-Fat Diet
Introduction: In high-fat diet-induced obesity, the levels of cathepsin L (CTSL) and cathepsin B (CTSB) increase in adipocytes, resulting in insulin resistance in the adipose tissue. In this study, the preventive effect of endurance training on the gene expression of CTSL and CTSB was investigated in the adipose tissue of mice with a high-fat diet. Materials and Methods: Twenty-one male mice (a...
متن کاملThe effect of aerobic exercise on epicardial adipose tissue, insulin resistance, and some liver enzymes in high-fat diet-induced obesity male wistar rat
Background and Aim: Due to the prevalence and socio-economic consequences of obesity in mortality, cardiovascular (CAD) and nonalcoholic fatty liver disease the effectiveness of aerobic exercise on epicardial adipose tissue (EAT), insulin resistance (IR) and some liver enzymes of high-fat diet-induced obesity male wistar rats was investigated. Methods: Thirty-two male Wistar rats with an averag...
متن کاملMomordica cymbalaria fruit extract attenuates high-fat diet-induced obesity and diabetes in C57BL/6 mice
Objective(s): The present study was aimed to evaluate the effect of methanolic fruit extract of Momordica cymbalaria (MeMC) against high-fat diet-induced obesity and diabetes in C57BL/7 mice.Materials and Methods: In the present study, six weeks old male C57BL/6 mice were divided into four groups. G-1 and G-2 served as lean control and HFD control, G-3 and G-4 received MeMC 25 and 50 mg/kg, BW ...
متن کاملGhrelin Does not Alter Aortic Intima-Media Thickness and Adipose Tissue Characteristics in Control and Obese Mice
Objective(s): Atherosclerosis is a chronic immune-inflammatory disease that generally leads to ischemic heart disease. Ghrelin has several modulatory effects on cardiovascular system. In this study, we investigated the effect of ghrelin on aortic intima-media thickness, size and the number of adipocyte cells in obese and control mice. Materials and Methods:This study was conducted on 24 male C...
متن کاملThromboxane synthase deficiency improves insulin action and attenuates adipose tissue fibrosis.
Thromboxane A2, an arachidonic acid-derived eicosanoid generated by thromboxane synthase (TBXAS), plays critical roles in hemostasis and inflammation. However, the contribution of thromboxane A2 to obesity-linked metabolic dysfunction remains incompletely understood. Here, we used in vitro and mouse models to better define the role of TBXAS in metabolic homeostasis. We found that adipose expres...
متن کامل